35 research outputs found

    Blocking optimal kk-arborescences

    Get PDF
    Given a digraph D=(V,A)D=(V,A) and a positive integer kk, an arc set F⊆AF\subseteq A is called a \textbf{kk-arborescence} if it is the disjoint union of kk spanning arborescences. The problem of finding a minimum cost kk-arborescence is known to be polynomial-time solvable using matroid intersection. In this paper we study the following problem: find a minimum cardinality subset of arcs that contains at least one arc from every minimum cost kk-arborescence. For k=1k=1, the problem was solved in [A. Bern\'ath, G. Pap , Blocking optimal arborescences, IPCO 2013]. In this paper we give an algorithm for general kk that has polynomial running time if kk is fixed

    On the tractability of some natural packing, covering and partitioning problems

    Get PDF
    In this paper we fix 7 types of undirected graphs: paths, paths with prescribed endvertices, circuits, forests, spanning trees, (not necessarily spanning) trees and cuts. Given an undirected graph G=(V,E)G=(V,E) and two "object types" A\mathrm{A} and B\mathrm{B} chosen from the alternatives above, we consider the following questions. \textbf{Packing problem:} can we find an object of type A\mathrm{A} and one of type B\mathrm{B} in the edge set EE of GG, so that they are edge-disjoint? \textbf{Partitioning problem:} can we partition EE into an object of type A\mathrm{A} and one of type B\mathrm{B}? \textbf{Covering problem:} can we cover EE with an object of type A\mathrm{A}, and an object of type B\mathrm{B}? This framework includes 44 natural graph theoretic questions. Some of these problems were well-known before, for example covering the edge-set of a graph with two spanning trees, or finding an ss-tt path PP and an s′s'-t′t' path P′P' that are edge-disjoint. However, many others were not, for example can we find an ss-tt path P⊆EP\subseteq E and a spanning tree T⊆ET\subseteq E that are edge-disjoint? Most of these previously unknown problems turned out to be NP-complete, many of them even in planar graphs. This paper determines the status of these 44 problems. For the NP-complete problems we also investigate the planar version, for the polynomial problems we consider the matroidal generalization (wherever this makes sense)

    Covering symmetric skew-supermodular functions with hyperedges

    Get PDF
    In this paper we give results related to a theorem of Szigeti that concerns the covering of symmetric skew-supermodular set functions with hyperedges of minimum total size. In particular, we show the following generalization using a variation of Schrijver’s supermodular colouring theorem: if p1 and p2 are skewsupermodular functions whose maximum value is the same, then it is possible to find in polynomial time a hypergraph of minimum total size that covers both of them. Note that without the assumption on the maximum values this problem is NP-hard. The result has applications concerning the local edge-connectivity augmentation problem of hypergraphs and the global edge-connectivity augmentation problem of mixed hypergraphs. We also present some results on the case when the hypergraph must be obtained by merging given hyperedges

    A new approach to splitting-off

    Get PDF
    corecore